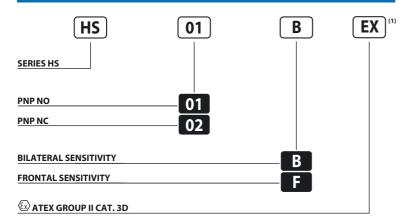


Hall Effect Magnetic Sensors I 9

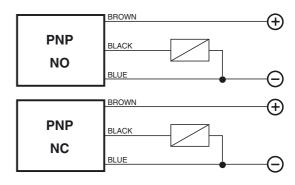
HALL EFFECT MAGNETIC PROXIMITY SENSORS 12÷30 VDC PNP OUTPUT

- Three-wire sensors
- Fast 50 µS ON/OFF
- Sensing models: Front end travel Bilateral side travel
- · Choice of magnet targets
- PNP NC or NO

New



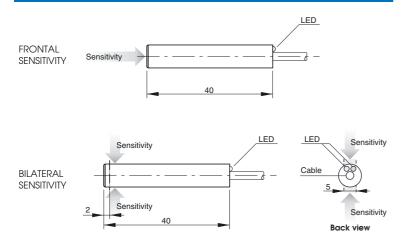
HS Series


Identification code

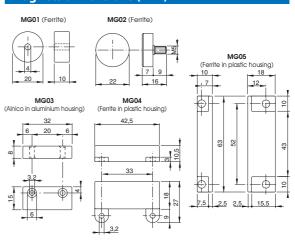
≥ 25 (Tip. 15 at 25°C)
≥ 5 (Tip. 11 at 25°C)
Max. diff. 7 (Tip. 4 at 25°C)
12 ÷ 30 VDC (-15/+10%)
≤ 10%
200 mA
≤ 10 mA
< 1.8 V
Output indicator
Supply indicator
10 kHz
100 μS
50 mS
Present (self-resetting)
Against reversal polarity - inductive loads
- 20 ÷ +60 °C
IP 67
2 m
3 x 0.25 mm ²
Nickel-plated brass
50 g

⁽¹⁾ Device marking ⁽²⁾ II 3D IP67 T6X.

Wiring diagrams



Hall effect sensor / magnet switching distance (mm)


	ETER 9 Hysteresis	
33	4	MG01
30	4	MG02
18	5	MG03
41	6,5	MG04
35	7	MG05

WARNING: The data specified in this table have an approximate value because they depend on the magnet position, on the material on which it is applied (ferromagnetic or not) and because they are related to the magnet during the frontal approach.

Dimensions (mm)

Magnets dimensions (mm)

